Dr. Wei Qiang – Advanced Materials Engineering – Best Researcher Award

Dr. Wei Qiang - Advanced Materials Engineering - Best Researcher Award

Xi'an Shiyou University - China 

Author Profile

SCOPUS

Early academic pursuits 🎓

Wei Qiang embarked on his academic journey with a bachelor’s degree in material forming and control engineering at nanjing university of science and technology under the guidance of professor kehong wang. his dedication to the field of materials science deepened as he pursued a ph.d. in materials science and engineering from the same institution, also supervised by professor wang. during this period, wei honed his expertise in advanced welding technologies, laying the foundation for his future contributions to the discipline.

Professional endeavors 🏫

since april 2018, wei qiang has served as a lecturer at the college of materials science and engineering, xi’an shiyou university. in this role, he combines teaching with cutting-edge research, mentoring the next generation of materials scientists while contributing to advancements in welding and additive manufacturing. his academic career reflects a seamless integration of education and innovation, fostering a collaborative environment for scientific growth.

Contributions and research focus 🔬

Wei qiang’s research focuses on advanced welding processes, particularly in dual heat source and v-shaped coupling welding technologies. his work explores the formation mechanisms, thermal-stress distribution, and process optimization of welding in materials like aluminum alloys. his studies also extend to additive Advanced Materials Engineering manufacturing using gas tungsten arc welding (gta), demonstrating innovative approaches to improve material properties and manufacturing efficiency. through experimental and simulation-based methodologies, his research addresses critical challenges in materials processing.

Accolades and recognition 🏅

Wei’s scholarly contributions are reflected in his publications in renowned journals such as the journal of materials research and technology and journal of Advanced Materials Engineering manufacturing processes. his studies on v-shaped coupling welding and double-sided heat source processes have garnered attention for their innovative approaches and practical implications. his recognition in the field highlights his role as a key contributor to advancements in materials science.

Impact and influence 🌍

through his pioneering research, wei qiang has significantly influenced the field of welding and materials processing. his work on numerical simulations and innovative welding techniques provides valuable insights for industrial applications, particularly in aerospace and automotive sectors. by advancing the Advanced Materials Engineering understanding of welding dynamics, he contributes to the development of sustainable and efficient manufacturing practices.

Legacy and future contributions 🔮

As a researcher and educator, wei qiang is committed to driving innovation in materials science. his ongoing work promises further breakthroughs in welding and additive manufacturing technologies. by mentoring young scientists and expanding the scope of his research, he ensures a lasting impact on the academic and industrial communities. his legacy is rooted in his dedication to solving complex challenges and fostering progress in the field.

Notable Publications

  1. Title: Process characteristics of V-shaped coupling dual GTA-based additive manufacturing
    Authors: Qiang, W., Wang, K., Gao, C., Lu, Y., Wen, G.
    Journal: Journal of Materials Research and Technology, 2023, 23, pp. 1968–1979
  2. Title: Numerical simulation of T-joint welding with cold wire filling and double heat sources
    Authors: Qiang, W., Lu, Y., Yuan, Y., Sun, C.
    Journal: Cailiao Kexue yu Gongyi/Material Science and Technology, 2021, 29(5), pp. 57–62
  3. Title: Microstructural analysis and mechanical behavior of TC4 titanium alloy and 304 stainless steel by friction stir lap welding
    Authors: Lu, Y., Xu, X., Zhang, B., Cao, J., Li, W.
    Journal: Welding in the World, 2021, 65(10), pp. 1915–1930
  4. Title: Forming characteristics and mechanism of double-sided heat source synergic vertical welding on an aluminum alloy
    Authors: Qiang, W., Wang, K., Wang, S., Lu, Y., Gao, Q.
    Journal: Journal of Manufacturing Processes, 2021, 64, pp. 356–368
  5. Title: Microstructure and wear resistance of TiB2/7075 composites produced via rheocasting
    Authors: Gao, Q., Yang, B., Gan, G., Wang, S., Lu, Y.
    Journal: Metals, 2020, 10(8), pp. 1–14, 1068

Dr. Faisal mukhtar – Materials Science and Physics – Best Researcher Award

Dr. Faisal mukhtar - Materials Science and Physics - Best Researcher Award

School of Chemical Sciences, Universiti Science Malaysia - Malaysia 

Author Profile 

GOOGLE SCHOLAR

📚 Early academic pursuits

Faisal mukhtar was born in a small village in district bahawalpur, pakistan, where he completed his early schooling. he later pursued his bachelor's degree from the islamia university of bahawalpur (iub), followed by an msc in physics from bahauddin zakariya university, multan. his academic journey continued with an mphil from the centre of excellence in solid state physics at the university of punjab, lahore. finally, he earned his phd in semiconductors and nanotechnology from the institute of physics, iub. his strong educational foundation laid the groundwork for a remarkable career in materials science and engineering.

🔬 Professional endeavors

with over five years of research experience in materials science, electrochemistry, and advanced energy storage, faisal mukhtar has worked extensively at the institute of physics, iub. he has also gained significant expertise in operating various material characterization tools, including xrd, ftir, raman, pl, uv-vis, iv, sem/tem, xps, and electrochemical workstations. currently, he is part of the school of chemical sciences at universiti sains malaysia, penang, contributing to cutting-edge research and education in nanotechnology and materials science.

🧪 Contributions and research focus

Dr. Faisal mukhtar's research focuses on the synthesis and development of metal oxide nanoparticles, nanocomposite systems, and carbon-based materials like Materials Science and Physics graphene oxide, reduced graphene oxide, and fullerene. these materials have a wide range of applications, including optical, electrical, environmental, biomedical, and energy conversion devices. his hands-on experience in various nanomaterial synthesis techniques such as sol-gel, hydrothermal, and solid-state methods has been crucial in advancing his research, particularly in the development of semiconductors and energy storage systems.

🏆 Accolades and recognition

Faisal mukhtar has authored 60 high-impact articles with a combined impact factor of 350, which have garnered over 1900 citations, reflecting his influence in the Materials Science and Physics field. his h-index of 28 and i10-index of 45 are testaments to his research contributions. additionally, he has been involved in guiding four phd and 35 mphil students, demonstrating his dedication to nurturing the next generation of scientists. he is currently supervising two phd and six mphil students, continuing to expand his impact on academic and research communities.

🌍 Impact and influence

Through his extensive research in materials science, faisal mukhtar has contributed significantly to the understanding and development of nanomaterials for a range of applications. his work on energy storage, biocompatible materials, and advanced energy conversion systems has not only advanced the scientific community but Materials Science and Physics also holds potential for addressing global challenges such as renewable energy and environmental sustainability. his collaborations and publications have enhanced the visibility of pakistani researchers on the global stage.

🏅 Legacy and future contributions

As a seasoned researcher and mentor, faisal mukhtar's legacy is rooted in his significant contributions to nanotechnology and material science. his work in energy storage systems and nanocomposites will continue to influence future developments in these fields. by training and guiding numerous phd and mphil students, he is ensuring the continuation of innovative research in materials science. his dedication to both research and education ensures his lasting impact on the scientific community.

Notable Publications 

  1. Title: Dual S-scheme heterojunction ZnO–V2O5–WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity
    Authors: F Mukhtar, T Munawar, MS Nadeem, MN ur Rehman, M Riaz, F Iqbal
    Journal: Materials Chemistry and Physics, Vol. 263, 124372 (2021)
  2. Title: Zn0.9Ce0.05M0.05O (M= Er, Y, V) nanocrystals: structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity
    Authors: T Munawar, S Yasmeen, F Mukhtar, MS Nadeem, K Mahmood, MS Saif, et al.
    Journal: Ceramics International, Vol. 46 (10), 14369-14383 (2020)
  3. Title: Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping
    Authors: MS Nadeem, T Munawar, F Mukhtar, MN Ur Rahman, M Riaz, F Iqbal
    Journal: Ceramics International, Vol. 47 (8), 11109-11121 (2021)
  4. Title: Hydrothermally derived Co, Ni co-doped ZnO nanorods; structural, optical, and morphological study
    Authors: MS Nadeem, T Munawar, F Mukhtar, MN ur Rahman, M Riaz, A Hussain, et al.
    Journal: Optical Materials, Vol. 111, 110606 (2021)
  5. Title: Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance
    Authors: T Munawar, F Mukhtar, MS Nadeem, S Manzoor, MN Ashiq, K Mahmood, et al.
    Journal: Journal of Alloys and Compounds, Vol. 898, 162779