Dr. Oualid Messal – Magnetic materials for energy – Best Researcher Award 

Dr. Oualid Messal - Magnetic materials for energy - Best Researcher Award 

Université of Lille - France

AUTHOR PROFILE 

SCOPUS 

👨‍🎓 EARLY ACADEMIC PURSUITS

Dr. Oualid Messal's academic journey began in his home country of Algeria, where he completed his B.Sc. in Electrical Engineering at Béjaia University in 2008. His exceptional academic performance led him to be awarded the prestigious Valedictorian National Undergraduate Award, a distinction organized by the Ministry of Higher Education and Scientific Research (Algeria). This award earned him a scholarship for postgraduate education in France, where he went on to pursue a Master’s degree in Electrical Engineering from Ecole Centrale de Lyon and INSA Lyon, graduating in 2010. His Ph.D. journey at Lyon University began shortly after, where he worked on characterizing and modeling the thermomagnetic behavior of NiFe alloys for virtual prototyping, defending his thesis successfully in 2013.

🔬 PROFESSIONAL ENDEAVORS

Dr. Messal's professional career began in earnest after his Ph.D., when he held the position of Postdoctoral Research Fellow at the National Center for Scientific Research (CNRS) at the Grenoble Electrical Engineering Lab (G2Elab) from 2014 to 2018. During this time, he contributed significantly to various projects related to the thermomagnetic behavior of materials. He also served as an Associate Research Fellow for EZUS Lyon & EDF, where he computed induced currents in the human body in collaboration with Ampère Lab. His diverse expertise and interest in electromagnetism and materials science led him to a career in academia, and since 2018, he has been a Maître de Conférences (Associate Professor) at the University of Lille, working in the Lille Electrical Engineering and Power Electronics Lab (L2EP).

🧪 CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Messal's research is primarily focused on the electromagnetic behavior of materials and their applications in electrical engineering. His Ph.D. work on thermomagnetic behavior of NiFe alloys has laid the foundation for many of his subsequent projects. His primary focus has been on the characterization and modeling of magnetic materials, with specific attention to soft and Magnetic materials for energy feebly magnetic materials. He is also involved in studying the aging effects of magnetic materials and their behavior under strain, with ongoing projects such as the MASTERMIND2 project that aims to understand magnetic aging and develop experimental and modeling advancements in this area. Additionally, Dr. Messal has been active in industrial collaborations, particularly in sectors that involve electromagnetic field exposure and material behavior.

🏅 ACCOLADES AND RECOGNITION

Dr. Messal has been widely recognized for his academic excellence, professional contributions, and expertise in electromagnetic materials. In addition to the Valedictorian Award he received in Algeria, his research on NiFe alloys has been pivotal in shaping current understanding in his field. His expertise is not only recognized in France but also internationally. He is a member of the Magnetic materials for energy technical committee TC 68 on magnetic alloys and steels of the International Electrotechnical Commission (IEC), contributing significantly to the development of international standards for magnetic materials. His contributions in this area have seen him participate in meetings in Japan and Italy, showcasing his international reputation.

🌍 IMPACT AND INFLUENCE

Through his role in the IEC and his leadership in collaborative research projects, Dr. Messal has made a lasting impact on both the academic and industrial communities. His work on magnetic materials and thermomagnetic behavior has influenced advancements in materials science, particularly in applications involving electrical steels and alloys. The international consultations and Magnetic materials for energy committees he is involved in, such as working groups on magnetic material classification and testing methods, have further solidified his role as a key contributor to the field. His work influences not only academic research but also industrial practices and standards.

🏛️ LEGACY AND FUTURE CONTRIBUTIONS

Dr. Messal’s ongoing research in the field of electrical engineering and magnetic materials promises to shape future developments in this vital area of science and engineering. With projects like MASTERMIND2 focusing on the aging behavior of magnetic materials under strain, his work is expected to continue influencing the development of new materials with better performance characteristics. Dr. Messal’s participation in international standardization efforts, combined with his strong academic role, ensures his continued legacy in both research and education, training future generations of engineers and researchers. His work on virtual prototyping and magnetic materials will likely continue to shape the engineering landscape, pushing the boundaries of materials science and engineering.

NOTABLE PUBLICATIONS 

  • Title: ODF-based model considering compressive stress for modeling the magnetic properties of Grain-oriented electrical steels
    Authors: Li, Z., Tang, Z., Messal, O., Benabou, A., Wang, S.
    Journal: Journal of Magnetism and Magnetic Materials, 2024, 604, 172279
  • Title: Study of the ability of MBN-based NDT to distinguish high-performance martensitic steel grades
    Authors: Dherbécourt, M., Messal, O., Tang, Z., Qozam, H., Lefèvre, F.
    Journal: Journal of Magnetism and Magnetic Materials, 2024, 590, 171661
  • Title: Consideration of tensile stress in the ODF-based approach for modelling the first magnetization curves of Grain-Oriented Electrical Steels
    Authors: Li, Z., Tang, Z., Messal, O., Benabou, A., Wang, S.
    Journal: Journal of Magnetism and Magnetic Materials, 2024, 590, 171704
  • Title: Anisotropic Models of Nonlinear Magnetic Behavior Laws for Finite Element Modeling of Iron Losses in a Toroidal Core
    Authors: Drappier, J., Guyomarch, F., Cherif, R., Chevallier, L., Benabou, A.
    Journal: IEEE Transactions on Magnetics, 2024, 60(9), 7500205
  • Title: Anisotropic Models of Nonlinear Magnetic Behavior Laws for Finite Element Modeling of Iron Losses in a Toroidal Core
    Authors: Drappier, J., Guyomarch, F., Cherif, R., Chevallier, L., Benabou, A.
    Journal: 2024 IEEE International Magnetic Conference - Short Papers, INTERMAG Short Papers 2024 - Proceedings, 2024

Dr. Priyanka Nayak – Experimental Condensed Matter Physics – Best Researcher Award

Dr. Priyanka Nayak - Experimental Condensed Matter Physics - Best Researcher Award

Amity university, Jharkhand - India

Author Profile 

GOOGLE SCHOLAR 

Early academic pursuits 🎓

Priyanka Nayak embarked on her academic journey with a b.sc. in physics from ravenshaw university, cuttack, odisha, where she graduated with an impressive 77.9% in 2014. her passion for physics led her to pursue an m.sc. in the same field at veer surendra sai university of technology, burla, odisha, securing an outstanding 85% in 2016. determined to deepen her expertise, she completed her ph.d. in physics from the national institute of technology, rourkela in july 2023, with a cgpa of 8.95. her academic foundation is a testament to her dedication and excellence in the field of condensed matter physics.

Professional endeavors 🏫

Currently serving as an assistant professor at the amity institute of applied sciences, amity university, ranchi, priyanka has made significant strides in both teaching and research. her teaching focuses on the core principles of physics, inspiring future scientists and researchers. at amity, she integrates her research experience into the curriculum, providing students with insights into the latest advancements in physics, particularly in the fields of solid-state lighting and luminescent materials.

Contributions and research focus 🔍

Priyanka’s research is centered on solid-state lighting technology and phosphor materials, which are key to improving energy efficiency in modern electro-optical devices. her work has broad applications in areas like energy conservation, display devices, and lighting sources, making significant contributions toward reducing global energy consumption. in addition to lighting technology, she explores phosphors with miniaturized structures and intriguing properties, studying their effects Experimental Condensed Matter Physics  on bulk properties through core-shell structures. her research extends to spectroscopic applications such as non-invasive temperature thermometry, latent fingerprint visualizations, and security ink for anti-counterfeiting, making her contributions highly relevant to modern scientific and technological needs.

Accolades and recognition 🏅

Priyanka's research achievements have been recognized by her peers in the scientific community. her rigorous work on luminescence and optical materials has not only earned her a doctoral degree from a prestigious institution but also a respected position as an educator at amity university. her academic accomplishments, Experimental Condensed Matter Physics including an excellent cgpa during her ph.d. and top grades during her master's and bachelor's studies, speak to her dedication and prowess in the field of physics.

Impact and influence 🌍

Priyanka’s work in solid-state lighting and energy-efficient materials is timely and impactful, addressing key global challenges such as energy consumption and greenhouse gas emissions. her research contributes to the development of new, efficient light sources and other technological innovations, promoting sustainability Experimental Condensed Matter Physics and energy security. her work on luminescent materials also plays a crucial role in advancing security technologies and forensic applications, further extending her influence across various fields of science.

Legacy and future contributions 🔮

Priyanka Nayak’s legacy is one of innovation and dedication to pushing the boundaries of material science and optical physics. her continued focus on improving energy efficiency and developing new applications for luminescent materials positions her as a forward-thinking researcher in her field. looking ahead, priyanka is Experimental Condensed Matter Physics poised to make further breakthroughs in energy-efficient lighting, advanced materials, and spectroscopic applications, contributing to both academic knowledge and practical technological advancements.

Notable Publications

  • Yb-Mn dimer tailored upconversion luminescence in CaWO4: Er3+/Yb3+/Mn2+ green phosphors for thermometry and optical heating
    Authors: P. Nayak, S.S. Nanda, S. Pattnaik, V.K. Rai, R.K. Sharma, S. Dash
    Journal: Optics & Laser Technology, 2023
  • Enhanced luminescence and Judd-Ofelt analysis in SiO2 encapsulated CaWO4@ CaWO4: Eu: Bi for visualization of latent fingerprints and anti-counterfeiting
    Authors: P. Nayak, S.S. Nanda, S. Dash
    Journal: Applied Surface Science, 2023
  • Tunable luminescence of Eu3+‐activated CaWO4 nanophosphors via Bi3+ incorporation
    Authors: P. Nayak, S.S. Nanda, R.K. Sharma, S. Dash
    Journal: Luminescence, 2020
  • Simultaneous influence of Mg2+ and Sc3+ co-doping on upconversion luminescence and optical thermometry in β-NaYF4: Yb3+/Ho3+ microphosphor
    Authors: S.S. Nanda, P. Nayak, S. Pattnaik, V.K. Rai, S. Dash
    Journal: Journal of Alloys and Compounds, 2023
  • Structural, optical spectroscopy and energy transfer features of Tb3+-activated (Y, Gd)F3 nanophosphors for UV-based LEDs
    Authors: S.S. Nanda, P. Nayak, S.K. Gupta, N.S. Rawat, U.K. Goutam, S. Dash
    Journal: New Journal of Chemistry, 2022