Dr. Yuncai jiang | Physics and Materials Science | Best Researcher Award
Southeast University | China
Author Profile
Summary
Yuncai jiang is an emerging scholar whose academic journey bridges chemical engineering and electronic materials. currently a ph.d. candidate at southeast university, his research focuses on two-dimensional materials, van der waals heterostructures, and the etching mechanisms of silicon carbide. with over ten sci-indexed publications, two national patents, and co-authorship of a specialized book on black phosphorus, he is making meaningful contributions to optoelectronics and semiconductor surface engineering. through his interdisciplinary work and active participation in collaborative projects, he promotes innovation, knowledge dissemination, and newcomer socialization in scientific communities.
Early academic pursuits
Yuncai jiang began his academic journey in chemical engineering and technology, earning his bachelor of science from guizhou institute of technology. driven by a passion for advanced materials and device engineering, he pursued a master’s degree in chemical engineering at kunming university of science and technology, completing it. during these formative years, he cultivated a strong foundation in materials chemistry, which laid the groundwork for his transition into the interdisciplinary field of electronic science and technology. his ability to navigate between chemical and electronic domains reflects a deep commitment to research excellence and newcomer socialization in emerging scientific communities.
Professional endeavors
Currently a ph.d. candidate in electronic science and technology at southeast university in nanjing, china, yuncai jiang focuses on the study of two-dimensional (2d) materials and semiconductor surface engineering. his graduate and doctoral work involves a combination of theoretical modeling and experimental techniques to design novel nanomaterials and heterostructures for optoelectronic and energy-related applications. through various research roles, jiang has become an integral part of academic collaborations, contributing to both national and international projects that emphasize innovation and newcomer socialization in cross-disciplinary teams.
Contributions and research focus
Yuncai Jiang's research spans the preparation and electrochemical exfoliation of black phosphorus nanosheets, development of 2d iv–vi semiconductor materials, and design of van der waals heterostructures for photovoltaic conversion. he is particularly known for his in-depth work on the wet and dry etching mechanisms of silicon carbide (sic), offering atomic-level insights through first-principles simulations. his research approach integrates defect and strain engineering to enhance the thermoelectric properties of nanomaterials, contributing significantly to the broader field of low-dimensional materials. he has published over ten sci-indexed papers and holds two authorized invention patents, which highlight his dedication to high-impact science.
Impact and influence
Yuncai jiang's interdisciplinary work has made an influential mark on the field of 2d materials and optoelectronics. his book, preparation and applications of black phosphorus co-authored with leading experts, serves as a valuable academic resource. his research findings not only contribute to scientific literature but also have practical implications for device fabrication, energy harvesting, and surface treatment in semiconductors. he continues to foster newcomer socialization among young researchers through academic collaborations and mentorship.
Academic cites
With more than ten publications in reputed sci journals and two national patents, yuncai jiang’s work is gaining increasing citations across multiple domains, including material science, electronics, and chemical engineering. his contributions to black phosphorus synthesis and silicon carbide processing are often referenced by researchers developing next-generation sensors and energy conversion devices.
Legacy and future contributions
As a rising scholar, yuncai jiang aims to deepen his research on van der waals heterostructures, explore next-generation 2d semiconductors, and optimize etching techniques for wide-bandgap materials. his interdisciplinary methodology, grounded in both chemistry and electronics, positions him well to lead future innovations in nanotechnology and renewable energy devices. he is also committed to building inclusive academic environments that support newcomer socialization and knowledge transfer across disciplines.
Publications
Title: Initial dissociative absorption study of HF etchants on Si (0001) and C (0001¯) faces with differently terminated 4H–SiC
Author(s): Y. Jiang, S. Lei, Z. Zhou, C. Hung, Z. Li
Journal: Surfaces and Interfaces
Title: Enhanced Thermoelectric Performance of T-MoTe₂ Monolayers via Cluster Substitution and Strain Engineering
Author(s): Shuangying Lei, Yuncai Jiang, Zixian Li, Yanbo Zhao
Journal: Journal of Alloys and Compounds
Title: High Thermoelectric Performance and Low Lattice Thermal Conductivity in 2D Topological Insulators MBiH (M = Ga, In): A First-Principles Study
Author(s): Shuangying Lei, Zixian Li, Yuncai Jiang, Yanbo Zhao, Xiaodong Huang, Qingan Huang
Journal: ACS Applied Nano Materials
Title: PbSn(CH₃)₂ and PbSn(C₂H)₂ Monolayers as Rashba-Effect-Induced Two-Dimensional Topological Insulators for Thermoelectric Applications: A First-Principles Investigation
Author(s): Shuangying Lei, Yuncai Jiang, Zixian Li, Yanbo Zhao, Xiaodong Huang, Qingan Huang
Journal: ACS Applied Nano Materials
Title: Dual-Emitting Mn⁴⁺/Mn⁵⁺ in Ba₆Na₂Nb₂P₂O₁₇ phosphors for enhanced NIR-I and NIR-II spectroscopy applications
Author(s): Quan Zhang, Zetian Yang, Wei Hu, Maxime Delaey, Lihong Yin, Yuncai Jiang, Shuangying Lei, Henk Vrielinck, Dirk Poelman
Journal: Chemical Engineering Journal
Conclusion
Yuncai jiang exemplifies the next generation of researchers driving progress in nanotechnology and energy materials. his dedication to cross-disciplinary integration and deep technical insight has advanced both theoretical understanding and real-world applications in 2d materials. as he continues to expand his research and foster newcomer socialization among peers, his work is poised to influence the future of low-dimensional materials and sustainable technologies. his career trajectory reflects both promise and purpose, making him a valuable contributor to global scientific advancement.