Dr. Kashinath Lellala – Energy and environmental applications – Best Innovation Award

Dr. Kashinath Lellala - Energy and environmental applications - Best Innovation Award

Xavier University of Louisiana - United States

AUTHOR PROFILE 

SCOPUS 

EARLY ACADEMIC PURSUITS 🎓

Kashinath Lellala’s academic journey began with his M.Sc. in Physics from Kakatiya University, Warangal, Telangana, India, in 2007, where he specialized in electronics. Following this, he pursued an M. Phil. in Physics from Alagappa University, India, in 2013, focusing on thin films and nanotechnology. His research on graphene, particularly in the synthesis and characterization of single-layered graphene by chemical exfoliation, laid the foundation for his future work in nanomaterials. He earned his Ph.D. in Materials Science from the University of Mysore, India, in 2018, under the guidance of Professor K. Byrappa. His doctoral thesis focused on the fabrication and processing of hybrid metal oxide/metal sulfide-graphene oxide nanocomposites and their potential applications in energy and environmental sectors.

PROFESSIONAL ENDEAVORS 💼

Dr. Lellala has accumulated significant professional experience in both research and teaching. With over 12 years of teaching experience and 9 years of research experience, he has collaborated with various academic and industrial teams to develop advanced materials for energy and environmental applications. His work has encompassed the design and synthesis of efficient catalysts, heterojunction materials for fuel cells, and anode/cathode materials for batteries. He has been a postdoctoral fellow at prestigious institutions, including Lulea University of Technology and the University of South Australia, where he furthered his research in nanomaterials. Currently, he holds multiple editorial board memberships for international journals, showcasing his commitment to the academic community.

CONTRIBUTIONS AND RESEARCH FOCUS 🔬

Dr. Lellala’s research contributions focus on developing advanced functional materials, particularly for energy and environmental applications. His work involves the fabrication of hybrid nanocomposites, combining metal oxides and metal sulfides with graphene oxide, to improve efficiency in various catalytic processes, including photo/electro catalysis, fuel cell reactions, and hydrogen evolution. His research into heterojunction materials for water splitting and energy storage devices, such as Energy and environmental applications batteries, aims to enhance the performance and sustainability of clean energy systems. Through computational work and experimental synthesis, he continues to push the boundaries of materials science in the context of renewable energy.

ACCOLADES AND RECOGNITION 🏆

Dr. Lellala has been recognized for his contributions to materials science and interdisciplinary research. He was awarded the EMINET Educator Award-2020 by the Forum of Interdisciplinary Research in Mathematical Sciences, India, for his exceptional teaching contributions. In 2020, he received a Certificate of Appreciation for his valuable contributions as a reviewer for the Journal of Cleaner Production. Furthermore, he was honored with the prestigious Caryl Trigger Research Foundation Energy and environmental applications Postdoctoral Fellowship at Lulea University of Technology, Sweden. These accolades highlight his excellence in both research and teaching within his field.

IMPACT AND INFLUENCE 🌍

Dr. Lellala’s work has had a significant impact on the field of materials science, particularly in the development of nanomaterials for clean energy applications. His contributions to the fabrication of hybrid nanocomposites have led to advancements in energy storage and conversion technologies. By advancing the understanding of heterojunction materials and catalysts, his research is contributing to the reduction of energy consumption and the improvement of sustainable technologies. His Energy and environmental applications work is influencing the scientific community’s approach to energy materials, particularly in the context of environmental sustainability.

LEGACY AND FUTURE CONTRIBUTIONS 🌟

Looking ahead, Dr. Lellala aims to continue his research on advanced materials for energy applications, particularly in the areas of hydrogen storage, fuel cells, and battery technologies. His work in the integration of nanomaterials for efficient catalytic processes and energy storage devices positions him at the forefront of clean energy solutions. By advancing the scalability and commercial viability of these materials, Dr. Lellala hopes to contribute to the development of sustainable energy solutions that can have a lasting positive impact on global energy systems. His future contributions will likely shape the next generation of energy materials and their applications, advancing both scientific and technological progress in the field.

NOTABLE PUBLICATIONS 

  • Title: Ceria Boosting on In Situ Nitrogen-Doped Graphene Oxide for Efficient Bifunctional ORR/OER Activity
    Authors: Kashinath, L., Byrappa, K.
    Journal: Frontiers in Chemistry, 2022, 10, 889579
  • Title: One-pot microwave synthesis of SnSe and Lanthanum doped SnSe nanostructure with direct Z scheme pattern for excellent photodegradation of organic pollutants
    Authors: Govindan, V., Kashinath, L., Geetha, G.V., Ramasamy, P., Sankaranarayanan, K.
    Journal: Ceramics International, 2022, 48(9), pp. 12228–12239
  • Title: Electrochemical deposition of Si nano-spheres from water contaminated ionic liquid at room temperature: Structural evolution and growth mechanism
    Authors: Vanpariya, A., Lellala, K., Bhagat, D., Mukhopadhyay, I.
    Journal: Journal of Electroanalytical Chemistry, 2022, 910, 116175
  • Title: Sulfur embedded on in-situ carbon nanodisc decorated on graphene sheets for efficient photocatalytic activity and capacitive deionization method for heavy metal removal
    Authors: Lellala, K.
    Journal: Journal of Materials Research and Technology, 2021, 13, pp. 1555–1566
  • Title: Microwave-Assisted Facile Hydrothermal Synthesis of Fe3O4-GO Nanocomposites for the Efficient Bifunctional Electrocatalytic Activity of OER/ORR
    Authors: Lellala, K.
    Journal: Energy and Fuels, 2021, 35(9), pp. 8263–8274

Prof. Seung Kyum Kim – Climate Change – Best Researcher Award

Prof. Seung Kyum Kim - Climate Change - Best Researcher Award

Korea Advanced Institute of Science and Technology - South Korea

Professional Profile

SCOPUS

Early Academic Pursuits

Seung Kyum Kim embarked on his academic journey at the University of Idaho, where he earned both his Bachelor and Master of Science degrees in Landscape Architecture. His academic prowess and dedication to the field were evident from the outset. Kim furthered his education at Harvard University’s Graduate School of Design, where he achieved a Doctor of Design in Urban Planning and Design and a Master in Design Studies with a concentration in Risk and Resilience.

Professional Endeavors

Kim’s professional career is marked by a blend of academic and practical experience. He has served as an Assistant Professor at the Graduate School of Future Strategy at KAIST and held adjunct professorships at the Graduate School of Green Growth & Sustainability and the Global School. His leadership extends to chairing the Urban Analytics Lab at KAIST, where he spearheads innovative research in urban planning and environmental sustainability. Prior to his current roles, Kim held significant positions such as Post-doctoral Fellow at Seoul National University and the University of Hong Kong, and Deputy Director at the National Committee for the 7th World Water Forum in South Korea.

Contributions and Research Focus

Kim's research is multifaceted, focusing primarily on urban planning, climate change adaptation, and sustainable development. His work has explored the economic and climate adaptation benefits of land conservation, the dynamics of green spaces in urban areas, and the impacts of renewable energy on climate vulnerability. Notable publications include studies on the socioeconomic distribution of green spaces in China and Climate Change the effects of climate risk on gentrification. Kim’s research has been published in high-impact journals such as Nature Climate Change, Science of the Total Environment, and Climatic Change.

Accolades and Recognition

Kim's contributions to the field have been recognized with numerous awards and honors. He received the Excellent Research Award and the Innovative Lecture Award from KAIST, and the Howard T. Fisher Prize for excellence in GIS from Harvard. His innovative designs and research have earned him prizes in urban design competitions in China and recognition from prestigious bodies such as the American Society of Climate Change Landscape Architects.

Impact and Influence

Kim's research has had a significant impact on the field of urban planning and environmental sustainability. His studies on green spaces and climate change adaptation have informed policy decisions and urban development strategies globally. Kim's work on climate vulnerability and Climate Change renewable energy has provided crucial insights into the challenges and opportunities of energy transitions in the context of climate change.

Legacy and Future Contributions

Looking ahead, Kim aims to continue his pioneering work in urban planning and climate adaptation, focusing on creating sustainable and resilient urban environments. His ongoing projects at KAIST and collaborations with international institutions underscore his commitment to addressing global environmental challenges. Kim’s legacy will be marked by his contributions to sustainable urban development and his role in shaping future strategies for climate resilience and environmental sustainability.

NOTABLE PUBLICATIONS