Prof. Jaekyung Sung – Energy materials – Best Researcher Award

Prof. Jaekyung Sung - Energy materials - Best Researcher Award

Gyeongsang national university - South Korea

Author Profile 

SCOPUS

GOOGLE SCHOLAR

Early academic pursuits 🎓

Jaekyung Sung’s academic journey began with a bachelor's degree in materials science and engineering from the kumoh national institute of technology (kit), south korea, where he laid the foundation of his research in semiconductor design. his passion for energy storage and materials science deepened during his master’s program at the gwangju institute of science and technology (gist), where he focused on synthesizing non-precious metal electrocatalysts for fuel cells. he further advanced his academic career with a ph.d. from the ulsan national institute of science and technology (unist), concentrating on the development of advanced anode materials for high-energy lithium-ion batteries under the mentorship of professor jaephil cho.

Professional endeavors 🏢

After completing his doctorate, jaekyung embarked on a prolific research career. he first served as a postdoctoral researcher at unist, working on cutting-edge projects in nano energy storage materials. this was followed by a prestigious postdoctoral position at the massachusetts institute of technology (mit) in the united states, where he worked in nuclear science and engineering under professor ju li. in september 2022, jaekyung took on the role of assistant professor at the school of materials science and engineering, gyeongsang national university (gnu), where he continues to contribute to the field of metallurgical engineering.

Contributions and research focus 🔬

Jaekyung sung's research has made significant strides in the field of energy storage, particularly in the development of advanced anode materials for high-energy Energy materials lithium-ion batteries. his work explores the synthesis and application of innovative materials aimed at improving battery efficiency and performance. his contributions extend beyond lithium-ion batteries, as he has also explored non-precious metal electrocatalysts for fuel cells, broadening the scope of his impact in clean energy technologies. his interdisciplinary approach integrates chemical engineering with materials science, driving innovations in sustainable energy solutions.

Accolades and recognition 🏅

Jaekyung’s research has been widely recognized in academic and scientific circles. he has published numerous papers in high-impact journals, showcasing his Energy materials expertise in battery technology and materials science. his groundbreaking work on anode materials for lithium-ion batteries has earned him accolades, highlighting his contributions to advancing energy storage technologies. his time at mit further solidified his reputation as a rising star in materials science, allowing him to collaborate with top researchers in the field.

Impact and influence 🌍

through his innovative research, jaekyung sung has made meaningful contributions to the global pursuit of sustainable energy solutions. his work in improving the performance of lithium-ion batteries and fuel cells directly supports the development of more efficient and environmentally friendly energy storage systems. his Energy materials research not only advances technological innovation but also addresses critical challenges in the transition to clean energy, positioning him as a key figure in the field of energy materials.

Legacy and future contributions đź”®

Jaekyung Sung’s legacy is being built on his dedication to pioneering energy storage technologies. as an assistant professor, he is committed to educating and mentoring the next generation of scientists and engineers, while continuing to push the boundaries of research in energy materials. his future contributions promise to further the development of high-performance batteries and fuel cells, accelerating progress toward a sustainable energy future.

Notable Publications 

  • Title: Comparison of commercial silicon-based anode materials for the design of a high-energy lithium-ion battery
    Authors: Choi, M., Lee, E., Sung, J., Kim, N., Ko, M.
    Journal: Nano Research, 2024, 17(6), pp. 5270–5277
  • Title: Surface fluorinated graphite suppressing the lithium dendrite formation for fast chargeable lithium ion batteries
    Authors: Ko, M., Jayasubramaniyan, S., Kim, S., Nam, S.Y., Sung, J.
    Journal: Carbon, 2024, 219, 118808
  • Title: Architecting Sturdy Si/Graphite Composite with Lubricative Graphene Nanoplatelets for High-Density Electrodes
    Authors: Park, S., Choi, M., Lee, J., Ko, M., Chae, S.
    Journal: Small, 2024
  • Title: Modeling capacitance of carbon-based supercapacitors by artificial neural networks
    Authors: Reddy, B.S., Narayana, P.L., Maurya, A.K., Cho, K.K., Reddy, N.S.
    Journal: Journal of Energy Storage, 2023, 72, 108537
  • Title: A strategy of boosting the effect of carbon nanotubes in graphite-blended Si electrodes for high-energy lithium-ion batteries
    Authors: Choi, M., Sung, J., Yeo, G., Chae, S., Ko, M.
    Journal: Journal of Energy Storage, 2023, 72, 108301

Assist Prof Dr. Chinmoy das – Energy Materials – Best Researcher Award

Assist Prof Dr. Chinmoy das - Energy Materials - Best Researcher Award

SRM University-AP, Andhra Pradesh - India

Author Profile

SCOPUS

ORCID

Early academic pursuits 🎓

Dr. Chinmoy das began his academic journey with a passion for experimental chemistry, laying a strong foundation during his undergraduate and postgraduate studies. his early interest in sustainable chemistry led him to pursue advanced research focused on eco-friendly materials and energy solutions. this academic groundwork fueled his determination to innovate in areas crucial for addressing climate and environmental challenges.

Professional endeavors 🏛️

throughout his career, dr. das has worked at the intersection of chemistry and environmental sustainability. his professional focus centers on synthesizing functional materials that contribute to sustainable energy solutions. from the conversion of atmospheric co2 into industrial fuels like methanol and ethanol to the creation of clean water from atmospheric moisture, he has consistently pursued impactful solutions. his work with solid-state electrolytes also opens up new possibilities for low-cost, biodegradable lithium and sodium-ion batteries.

Contributions and research focus 🔍

dr. das’s contributions to the field of experimental chemistry are distinguished by his focus on sustainability. he is particularly interested in using green chemistry methods to convert atmospheric co2 into clean fuels, thus offering a promising path toward reducing global carbon emissions. his innovations in harvesting clean Energy Materials water using solar power and creating biodegradable electrolytes for batteries underline his commitment to creating eco-friendly, scalable technologies.

Accolades and recognition 🏅

Dr. Chinmoy das’s pioneering work has garnered recognition from both academic and industrial sectors. his research contributions have led to publications in top-tier journals and invitations to present at international conferences. his ability to bridge fundamental chemistry with practical applications has positioned him as a key Energy Materials figure in sustainable material science and green energy production.

Impact and influence 🌍

The impact of dr. das's research extends beyond the laboratory. his innovative approaches to co2 conversion and water purification have the potential to influence global environmental policy and industrial practices. his work on biodegradable electrolytes offers a promising avenue for reducing the environmental footprint of Energy Materials energy storage technologies. his influence is seen not only in academia but also in industry, where sustainable technologies are urgently needed.

Legacy and future contributions đź”®

dr. Chinmoy das's legacy will be defined by his contributions to developing sustainable, scalable solutions for global environmental challenges. his work in transforming co2 into fuel, purifying water through solar energy, and advancing biodegradable battery technologies will continue to inspire future research. as a visionary experimental chemist, he is poised to lead further innovations in sustainable chemistry, leaving a lasting impact on both scientific and environmental communities.

Notable Publications 

Dr. Yingju Miao – Environmental and Sustainable Materials – Best Researcher Award

Dr. Yingju Miao - Environmental and Sustainable Materials- Best Researcher Award

Lliupanshui Normal University - China

Author Profile

ORCID

Early academic pursuits 🎓

Yingju Miao embarked on her academic journey with a keen interest in chemical engineering. she pursued her doctoral studies in resource chemical engineering at kunming university of science and technology (KUST), where her research focused on developing porous materials from solid waste for carbon capture applications. this area of study not only reflected her commitment to environmental sustainability but also laid the groundwork for her future research contributions.

Professional endeavors 🏢

currently, yingju miao serves as a professor at liupanshui normal university in the school of chemistry and materials engineering. throughout her professional career, she has consistently engaged in cutting-edge research while mentoring students and advancing chemical engineering applications. her dedication to both teaching and research highlights her role in fostering the next generation of scientific talent.

Contributions and research focus 🔬

yingju’s research primarily revolves around synthesizing porous materials from solid waste, aiming to enhance carbon capture processes. her innovative approaches are driven by the need for sustainable solutions to environmental challenges. with 14 published papers in prominent Environmental and Sustainable Materials scientific journals, her work stands as a testament to her strong research capabilities and the tangible impact of her work on the field of material engineering and carbon capture technologies.

Accolades and recognition 🏅

throughout her academic career, yingju miao has gained widespread recognition for her work. her 14 SCI papers not only highlight her academic prowess but have also earned her respect and admiration within the scientific community. her research contributions have been highly valued, Environmental and Sustainable Materials and her work continues to inspire further studies in the field of environmental sustainability.

Impact and influence 🌍

the impact of yingju’s research on porous materials and carbon capture is profound. her work has the potential to contribute significantly to efforts in combating climate change by providing practical solutions for reducing carbon emissions. her innovative use of solid waste materials in Environmental and Sustainable Materials creating porous structures presents a sustainable approach to environmental conservation.

Legacy and future contributions đź”®

yingju miao’s legacy is built on her commitment to sustainability, innovation, and the development of new materials for environmental applications. as she continues to advance in her career, her work is expected to make even more significant contributions to both academic research and practical applications in carbon capture and materials engineering.

Notable Publications

Mr. Ajan Meenakshisundaram – Geothermal energy – Best Researcher Award

Mr. Ajan Meenakshisundaram - Geothermal energy - Best Researcher Award

University of North Dakota - United States

Author Profile 

SCOPUS

Early academic pursuits 🎓

Ajan Meenakshisundaram embarked on his academic journey with a Bachelor of Technology in Mechanical Engineering from Dr. M.G.R Educational and Research Institute in Chennai, where he achieved a CGPA of 7.3/10. His quest for deeper knowledge led him to pursue a Master of Energy Engineering at the University of Genoa in Italy, graduating with a vote of 100/110. Currently, he is furthering his expertise with a Ph.D. in Energy Engineering at the University of North Dakota, where he maintains an impressive GPA of 3.9/4.

Professional endeavors 🌟

Ajan's professional experience reflects a strong commitment to advancing energy engineering. As a Graduate Research Assistant at the University of North Dakota, he is actively involved in a Department of Energy project focusing on hydrogen production from biomass feedstock. His role includes modeling high-temperature shell and tube heat exchangers and analyzing pilot experimental data. Additionally, he has served as a Graduate Teaching Assistant, where he supports the development of lecture materials and tutorials for courses on project dynamics and applied business analysis. His internship at the Energy and Environmental Research Center further enriched his knowledge of the North Dakota energy market.

Contributions and research focus 🔬

Ajan’s research contributions are centered on energy engineering, with a particular focus on hydrogen production and biomass feedstock. His work involves using advanced computational fluid dynamics software to model heat exchangers and assess thermophysical characteristics of Geothermal energy core samples. His research on high-pressure and temperature equipment demonstrates his technical expertise and commitment to addressing complex energy challenges. This work aims to improve the efficiency and sustainability of energy systems, making a significant impact in the field.

Accolades and recognition 🏅

Ajan's academic and professional achievements have been recognized through his involvement in prestigious organizations. He is an active member of the American Association of Energy Engineers (AEE) and the Society of Petroleum Engineers (SPE). His role as the Secretary for the Geothermal energy Student Association of India (SAI) at the University of North Dakota and his volunteer work with the National Entrepreneurship Network (NEN) highlight his leadership and organizational skills. These roles underscore his dedication to both his professional field and community engagement.

Impact and influence 🌍

Ajan’s work in energy engineering has the potential to significantly influence the field, particularly in the areas of hydrogen production and biomass utilization. His innovative approach to modeling and data analysis contributes to the development of more efficient and sustainable Geothermal energy energy systems. By addressing critical energy challenges and providing valuable insights into energy markets, he is helping to shape the future of energy engineering and its applications.

Legacy and future contributions đź”®

Ajan Meenakshisundaram's legacy will be defined by his contributions to energy engineering and his commitment to advancing sustainable energy solutions. His ongoing research and professional endeavors are paving the way for future innovations in the field. As he continues to explore new methodologies and technologies, his work is expected to leave a lasting impact on the energy sector, influencing both academic research and practical applications.

Notable Publications 

Mr. Dubon Rodrigue – Energy Systems – Best Researcher Award

Mr. Dubon Rodrigue - Energy Systems - Best Researcher Award

IMT ATLANTIQUE - France

Professional Profile

ORCID 

Early Academic Pursuits

Dubon Rodrigue's academic journey began with a Bachelor’s Degree in Mathematics from Sorbonne Université, where he graduated with 2.1 honors in 2018. His studies focused on fundamental and applied mathematics, including statistics, probability, PDE analysis, algebra, and arithmetic, alongside an introduction to computer science through programming languages such as JavaScript, Matlab, and C++. He continued his education at Sorbonne Université, earning a Master’s Degree in Fluids Mechanics with first honors in 2020, a program he pursued jointly with Ecole Polytechnique. This period also included an exchange semester at ETH Zurich, which broadened his exposure to international academic standards and methodologies.

Professional Endeavors

Dubon Rodrigue has accumulated significant professional experience alongside his academic achievements. From January 2021 to September 2022, he worked as a Mechanical Engineer at Princeps, a small company specializing in developing solutions for scheduling and planning refinery sites. During his tenure, he achieved notable projects, including the development of a Jetty optimization model for ship dockings. Prior to this, he interned at Air Liquide Inc. as an R&D Engineer within the Computation & Data Science team, focusing on hybridizing AI algorithms and physical simulation of SMR furnaces for hydrogen production. His innovative work on hybrid modeling of heat radiation transfer was a major contribution to the field. Additionally, during his semester project at ETH Microrobotics Laboratory under Prof. Daniel Ahmed, he characterized the velocities of micro-swimmers for medical applications, resulting in a publication.

Contributions and Research Focus

Currently, Dubon is pursuing a Ph.D. in Computer Science with a focus on Energy Systems at IMT Atlantique. His interdisciplinary research integrates Artificial Intelligence with physical modeling of energy networks, specifically aimed at simplifying District Heating Networks topology. Energy Systems He has published an accepted journal article and a conference article, contributing to the academic discourse on this innovative topic. His projects, such as the development of a synthetic district heating generation model and an unsupervised clustering-based approach for distributed control frameworks, showcase his ability to blend theoretical research with practical applications.

Accolades and Recognition

Dubon's academic and professional journey has been marked by several accolades and recognitions. His academic performance earned him first honors in his Master's program and significant achievements during his Bachelor's. His professional contributions have been acknowledged Energy Systems through impactful projects at Princeps and Air Liquide Inc., and his research has been published in reputable journals and conferences, including a major contribution to a paper published in Nature Machine Intelligence.

Impact and Influence

Dubon Rodrigue’s work has had a significant impact on both the academic and professional fields. His research on AI and energy systems has the potential to revolutionize the way District Heating Networks are managed, offering more efficient and sustainable solutions. His contributions to hybrid AI modeling in industrial applications demonstrate the practical implications of his work, influencing future research and development in these areas. His interdisciplinary approach, combining computer science, mechanical engineering, and energy systems, positions him as a Energy Systems thought leader in integrating technology with real-world applications.

Legacy and Future Contributions

Dubon Rodrigue's ongoing projects and research promise a lasting legacy of innovation and excellence. His work on synthetic district heating generation and clustering approaches for distributed control frameworks are paving the way for more efficient and sustainable energy systems. His expertise in AI, combined with his practical experience in mechanical engineering and fluid dynamics, ensures that his future contributions will continue to push the boundaries of what is possible in these fields. As he advances in his career, his dedication to interdisciplinary research and practical applications will undoubtedly leave a lasting impact on both academia and industry.

NOTABLE PUBLICATIONS

Assist Prof Dr. Burak Tekin – Rechargeable Batteries – Young Scientist Award

Assist Prof Dr. Burak Tekin - Rechargeable Batteries - Young Scientist Award

Ondokuz Mayis University, Chemical Engineering - Turkey

Professional Profile

SCOPUS

ORCID  

Early Academic Pursuits

Dr. Burak Tekin's academic journey is distinguished by his focus on chemical engineering with a particular interest in energy storage devices. He completed his Bachelor's degree in Chemical Engineering from Cumhuriyet University in Sivas, Turkey, in 2011, graduating with honors. During his undergraduate studies, he was involved in research on supercapacitors and rechargeable batteries. He continued his academic pursuits at the same institution, earning his Master's degree in Chemical Engineering in 2013, where he was awarded the first-place student award for his thesis on novel electrode materials for various ion batteries. Dr. Tekin then pursued his Ph.D. at Gebze Technical University, focusing on the development of cathode materials for sodium-ion batteries with aqueous electrolytes, which he completed in 2019.

Professional Endeavors

Dr. Tekin has an extensive professional background in both academia and industry, with a focus on electrochemical energy storage systems. His experience spans several prestigious institutions, where he has contributed to groundbreaking research and development in battery technology.

Contributions and Research Focus

Dr. Tekin's research is centered on the development and characterization of advanced materials for energy storage devices, particularly sodium-ion and lithium-ion batteries. His work has significantly contributed to the understanding and improvement of cathode materials, enhancing the Rechargeable Batteries performance and efficiency of these batteries.

Accolades and Recognition

Dr. Tekin has been recognized for his academic excellence and research contributions throughout his career. His achievements include high GPA scores, prestigious research positions, Rechargeable Batteries and significant awards during his studies.

Impact and Influence

Dr. Tekin's research has had a significant impact on the field of energy storage, particularly in the development of more efficient and sustainable battery technologies. His work on sodium-ion and lithium-ion batteries has implications for various applications, including portable electronics, Rechargeable Batteries  electric vehicles, and renewable energy storage.

Legacy and Future Contributions

Dr. Tekin is poised to continue making substantial contributions to the field of chemical engineering and energy storage. His future research aims to further enhance the performance and sustainability of battery technologies, contributing to the development of next-generation energy storage systems.