Dr. Luca Socci – Energy and Environmental Engineering – Best Researcher Award

Dr. Luca Socci - Energy and Environmental Engineering - Best Researcher Award

University of Florence - Department of Industrial Engineering - Italy

Author Profile 

SCOPUS 

ORCID 

🌍 Early academic pursuits

Luca Socci  in florence, italy. his academic journey began with a deep passion for environmental engineering, leading him to pursue higher education at the university of florence. he completed his bachelor's degree in environmental engineering with honors, demonstrating early excellence in thermodynamics and heat transfer. his thesis focused on calibrating instruments for temperature monitoring in an ejector refrigeration cycle prototype, laying the foundation for his expertise in energy-efficient cooling systems. his outstanding academic performance continued into his master’s degree, where he graduated with top honors, further refining his research on efficient data center cooling solutions.

💡 Professional endeavors

As a funded researcher at the thermo group – department of industrial engineering (dief) at the university of florence, luca has been at the forefront of advancing thermodynamics and heat transfer applications. he transitioned seamlessly from academia to research, first as a doctoral student and later as a funded researcher. his work has been instrumental in optimizing hvac systems, particularly in desiccant devices and evaporative cooling technologies. he has actively contributed to educational programs, mentoring students and supporting courses in applied thermodynamics, energy efficiency, and hvac systems for industrial and civil applications.

🌐 Contributions and research focus

Luca’s research has significantly contributed to the understanding and enhancement of heat and mass transfer processes, focusing on sustainable energy solutions. his studies encompass Energy and Environmental Engineering hvac energy optimization, air disinfection methods, building energy efficiency, and the environmental impact of energy systems. he has made notable advances in humidification-dehumidification desalination systems, integrating innovative cooling technologies to boost performance. his numerical simulations and optimization models have provided new insights into efficient hvac equipment design, ensuring improved indoor air quality and energy sustainability.

🌟 Accolades and recognition

Luca’s academic excellence has been evident since his early years, earning him top honors in both his bachelor's and master’s degrees. his research work has been recognized through funding awards, allowing him to further explore groundbreaking developments in thermodynamics. his dedication to education and research has made him a valued member of the university of Energy and Environmental Engineering florence’s scientific community, where he has co-supervised multiple bachelor’s and master’s theses, shaping the next generation of energy engineers.

💪 Impact and influence

Through his innovative research, luca has played a crucial role in advancing sustainable hvac technologies, leading to practical applications that reduce energy consumption and enhance Energy and Environmental Engineering indoor air quality. his contributions to numerical simulations have influenced the design of more efficient cooling and ventilation systems, particularly in data centers, where energy efficiency is paramount. his collaborative efforts with students and researchers have fostered a culture of knowledge-sharing and scientific curiosity in the field of thermodynamics.

🏆 Legacy and future contributions

With a strong foundation in environmental engineering and thermodynamics, luca’s research continues to shape the future of energy-efficient technologies. his ongoing projects in hvac system optimization and desalination systems energy efficiency promise to deliver impactful advancements in the field. as he progresses in his career, his commitment to sustainable energy solutions and innovative research methodologies will leave a lasting legacy, ensuring that his work benefits both academia and industry for years to come.

Notable Publications 

  • Title: Desiccant thermally controlled dehumidification in HVAC systems: Energy and exergy analysis, evaluation of different materials
    Author(s): Luca Socci, Andrea Rocchetti, Martina Lippi, Federica Savelli, Antonio Verzino, Andrea Zini, Lorenzo Talluri, Giampaolo Manfrida, Lorenzo Ciappi
    Journal: Journal of Building Engineering

  • Title: Scenarios for the energy renovation of a residential building
    Author(s): Guglielmo Malevolti, Andrea Rocchetti, Luca Socci
    Journal: E3S Web of Conferences

  • Title: Ceramic Air-to-Air Recuperator for energy recovery in HVAC systems: CFD analysis and comparison with experimental tests
    Author(s): Luca Socci, Javier M. Rey-Hernandez, Andrea Rocchetti, Alberto Rey-Hernandez, Francisco J. Rey-Martínez
    Journal: Sustainable Energy Technologies and Assessments

  • Title: Enhancing third-generation district heating networks with data centre waste heat recovery: analysis of a case study in Italy
    Author(s): Luca Socci, Andrea Rocchetti, Antonio Verzino, Andrea Zini, Lorenzo Talluri
    Journal: Energy

  • Title: Exploiting the Ocean Thermal Energy Conversion (OTEC) technology for green hydrogen production and storage: Exergo-economic analysis
    Author(s): Lorenzo Ciappi, Luca Socci, Mattia Calabrese, Chiara Di Francesco, Federica Savelli, Giampaolo Manfrida, Andrea Rocchetti, Lorenzo Talluri, Daniele Fiaschi
    Journal: International Journal of Hydrogen Energy

Dr. Sadjad Naderi – Renewable Energy Technologies – Best Researcher Award

Dr. Sadjad Naderi - Renewable Energy Technologies - Best Researcher Award

Imperial College London - United Kingdom

Author Profile 

GOOGLE SCHOLAR 

🎓 Early academic pursuits

Sadjad Naderi embarked on his academic journey with a strong foundation in engineering and materials science, leading to a ph.d. focused on failure analysis of reinforced polymer composites. his passion for understanding material behavior under extreme conditions laid the groundwork for his future innovations. throughout his studies, he demonstrated exceptional analytical skills, combining experimental and computational approaches to explore the mechanical properties of heterogeneous materials. his early research provided valuable insights into material degradation, fracture mechanics, and structural optimization, setting the stage for a career dedicated to advancing solid mechanics.

🚀 Professional endeavors

As a senior research associate at imperial college london, sadjad naderi has amassed over nine years of postdoctoral experience at renowned institutions, including university college london, sheffield university, and the university of malaya. his work spans multiple industries, from aerospace and civil engineering to electrical devices and dental applications. he has played a pivotal role in pioneering numerical and experimental analysis techniques, particularly in failure analysis, impact damage assessment, and the optimization of composite structures. his expertise in finite element method (fem), discrete element method (dem), and coupled fem-dem simulations has contributed to significant advancements in computational mechanics.

🧐 Contributions and research focus

Naderi's research has been instrumental in bridging the gap between artificial intelligence and solid mechanics. he has developed cutting-edge methodologies integrating ai-driven simulations with physics-based models, revolutionizing material and structure modeling. his work on digital twin systems for drilling technology optimization has led to substantial improvements in drilling efficiency and cost reduction. by coupling finite-discrete element methods with machine learning, he has enabled real-time prediction of rock fracture behavior, minimizing tool failure rates Renewable Energy Technologies and enhancing operational safety. his research focus extends to material design, multiphysics multiscale modeling, and ai-driven structural analysis, addressing challenges in multifunctional composites and advanced material characterization.

🏆 Accolades and recognition

Naderi’s contributions to applied solid mechanics have been widely recognized within the scientific community. with an impressive citation index of 533 on google scholar and 462 on scopus, his research impact is evident. he has published 18 high-impact journal papers and holds two patents in innovative computational approaches for material behavior prediction. as a chartered Renewable Energy Technologies engineer (ceng) and a member of the institution of mechanical engineers (imeche, uk), he has established himself as a leading expert in his field. his work has gained recognition from both academia and industry, solidifying his reputation as a trailblazer in advanced simulation techniques.

👨‍💻 Impact and influence

Naderi’s research has significantly influenced industrial practices, particularly in drilling technology. his ai-integrated digital twin system has been adopted by leading drilling companies, Renewable Energy Technologies enhancing operational efficiency and reducing tool failure rates by 30%. his innovative hybrid computational approach has created a new paradigm for digital twins, applicable across various engineering sectors requiring rapid fracture prediction. through his collaborations with top universities and industry leaders, including drillco, drillstar, mines paris tech, university of glasgow, and university of utah, he has facilitated knowledge transfer and joint research initiatives, driving innovation at the intersection of academia and industry.

🌍 Legacy and future contributions

As a visionary researcher, naderi continues to push the boundaries of applied solid mechanics. his future work aims to further integrate artificial intelligence with physics-based simulations, expanding the capabilities of digital twin systems for complex material behavior analysis. his commitment to sustainability and efficiency in engineering applications ensures that his contributions will have a lasting impact on multiple industries. by mentoring young researchers and collaborating on international projects, he is shaping the next generation of scientists and engineers, leaving behind a legacy of innovation and excellence in computational mechanics

Notable Publications 

  • Title: Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates
    Author(s): S. Naderi, W. Tu, M. Zhang
    Journal: Cement and Concrete Research

  • Title: Meso-scale modelling of static and dynamic tensile fracture of concrete accounting for real-shape aggregates
    Author(s): S. Naderi, M. Zhang
    Journal: Cement and Concrete Composites

  • Title: Low-velocity impact damage of woven fabric composites: Finite element simulation and experimental verification
    Author(s): M.A. Hassan, S. Naderi, A.R. Bushroa
    Journal: Materials & Design

  • Title: 3D meso-scale modelling of tensile and compressive fracture behaviour of steel fibre reinforced concrete
    Author(s): S. Naderi, M. Zhang
    Journal: Composite Structures

  • Title: A novel framework for modelling the 3D mesostructure of steel fibre reinforced concrete
    Author(s): S. Naderi, M. Zhang
    Journal: Computers & Structures