Dr. Ke Liu – High-value utilization of steel slag – Best Researcher Award

Dr. Ke Liu - High-value utilization of steel slag - Best Researcher Award

University of Science ang Technology Beijing - China 

Author Profile 

SCOPUS 

Early academic pursuits 🎓

Ke Liu embarked on his academic journey in the field of metallurgical engineering, driven by a passion for materials science and sustainability. he completed his bachelor's degree at north china university of science and technology in 2017, where he gained foundational knowledge in metallurgy. continuing his pursuit of excellence, he obtained a master's degree from the same university in 2020, focusing on innovative applications in metallurgical processes. his academic aspirations led him to pursue a ph.d. at the university of science and technology beijing, where he delved deeper into solid waste resource utilization, heat energy storage, and co2 recycling. his dedication and academic excellence further earned him a prestigious opportunity to conduct joint doctoral research at the university of tokyo, japan, from 2023 to 2024, expanding his expertise in advanced materials engineering.

Professional endeavors 💼

Throughout his academic career, ke liu has been actively involved in high-impact research initiatives addressing critical challenges in metallurgy and environmental sustainability. his research has spanned diverse domains, including the development of innovative phase change materials, electrochemistry, and sewage resource treatment. his professional engagements have provided him with international exposure and the opportunity to collaborate with leading researchers in japan and china. these collaborations have enriched his expertise in material characterization and energy storage applications, paving the way for groundbreaking advancements in metallurgical engineering.

Contributions and research focus 🔬

Ke Liu's research focuses on solid waste resource utilization, aiming to transform industrial waste into valuable materials. his work in phase change energy storage materials has led to the High-value utilization of steel slag development of innovative composite materials derived from steel slag, providing sustainable and efficient energy storage solutions. additionally, he has explored co2 recycling strategies, contributing to the reduction of carbon emissions in industrial processes. his expertise in electrochemistry has also enabled advancements in sewage resource treatment, developing efficient methods for water purification and waste management. through his pioneering research, ke liu is making significant strides in creating environmentally friendly and cost-effective solutions for industrial sustainability.

Accolades and recognition 🏆

Ke Liu’s research excellence is reflected in his multiple publications in high-impact, q1 and q2 journals. his work has been featured in leading scientific journals such as the journal of energy High-value utilization of steel slag storage, ceramics international, and the journal of co2 utilization, with impressive impact factors ranging from 5.2 to 9.4. his contributions to phase change materials and steel slag utilization have been widely recognized in the scientific community, positioning him as a rising researcher in metallurgical engineering. his growing citation count and international collaborations further attest to the impact and significance of his research endeavors.

Impact and influence 🌍

Ke Liu's research has profound implications for sustainable industrial practices, particularly in the metallurgical sector. his work in developing energy-efficient phase change materials High-value utilization of steel slag contributes to improved heat energy storage solutions, crucial for renewable energy applications. his advancements in co2 recycling provide valuable insights into reducing greenhouse gas emissions, aligning with global sustainability goals. by transforming steel slag waste into useful composite materials, he has paved the way for more efficient waste management strategies. his research not only advances scientific knowledge but also holds practical significance for industries seeking sustainable alternatives.

Legacy and future contributions 💡

As a dedicated researcher, ke liu continues to push the boundaries of metallurgical engineering with his innovative approaches to material science and environmental sustainability. his ongoing work aims to further enhance the efficiency of phase change materials and explore new methods for sustainable resource utilization. with a strong foundation in electrochemistry and co2 recycling, he is poised to contribute significantly to the global effort in combating climate change through technological advancements. his legacy will be defined by his commitment to sustainable engineering solutions, inspiring future generations of researchers to explore new frontiers in metallurgical and environmental sciences.

Notable Publications 

  • Title: Reduction performance and degradation mechanism of chlorinated hydrocarbon electrocatalytic hydrodechlorination using synthetic Ti/Pd cathode
    Authors: Wang, J., Wu, S., Liu, K., Wang, C., Yang, Z.
    Journal: Journal of Water Process Engineering, 2024, 65, 105880
  • Title: Numerical Simulation of Innovative Slag Splashing Process in a Converter Using a Nozzle-Twisted Oxygen Lance
    Authors: Zhang, H., Liu, K., Zhao, H., Liang, J., Yuan, Z.
    Journal: Journal of Sustainable Metallurgy, 2024, 10(2), pp. 864–879
  • Title: Effect of hot coil immersion cooling process on microstructure and properties of strip steel and oxide scales
    Authors: Yu, Y., Zhang, L., Liu, K., Wang, L., Niu, T.
    Journal: Canadian Metallurgical Quarterly, 2024
  • Title: Melt structure of calcium aluminate-based non-reactive mold flux: Molecular dynamics simulation and spectroscopic experimental verification
    Authors: Liu, K., Han, Y., Zhu, L., Liu, S.
    Journal: Construction and Building Materials, 2023, 406, 133363
  • Title: Novel low-cost steel slag porous ceramic-based composite phase change material: An innovative strategy for comprehensive utilization of steel slag resources
    Authors: Liu, K., Yuan, Z., Zhao, H., Zhang, H., Ma, B.
    Journal: Ceramics International, 2023, 49(22), pp. 35466–35475

Assist Prof Dr. Burak Tekin – Rechargeable Batteries – Young Scientist Award

Assist Prof Dr. Burak Tekin - Rechargeable Batteries - Young Scientist Award

Ondokuz Mayis University, Chemical Engineering - Turkey

Professional Profile

SCOPUS

ORCID  

Early Academic Pursuits

Dr. Burak Tekin's academic journey is distinguished by his focus on chemical engineering with a particular interest in energy storage devices. He completed his Bachelor's degree in Chemical Engineering from Cumhuriyet University in Sivas, Turkey, in 2011, graduating with honors. During his undergraduate studies, he was involved in research on supercapacitors and rechargeable batteries. He continued his academic pursuits at the same institution, earning his Master's degree in Chemical Engineering in 2013, where he was awarded the first-place student award for his thesis on novel electrode materials for various ion batteries. Dr. Tekin then pursued his Ph.D. at Gebze Technical University, focusing on the development of cathode materials for sodium-ion batteries with aqueous electrolytes, which he completed in 2019.

Professional Endeavors

Dr. Tekin has an extensive professional background in both academia and industry, with a focus on electrochemical energy storage systems. His experience spans several prestigious institutions, where he has contributed to groundbreaking research and development in battery technology.

Contributions and Research Focus

Dr. Tekin's research is centered on the development and characterization of advanced materials for energy storage devices, particularly sodium-ion and lithium-ion batteries. His work has significantly contributed to the understanding and improvement of cathode materials, enhancing the Rechargeable Batteries performance and efficiency of these batteries.

Accolades and Recognition

Dr. Tekin has been recognized for his academic excellence and research contributions throughout his career. His achievements include high GPA scores, prestigious research positions, Rechargeable Batteries and significant awards during his studies.

Impact and Influence

Dr. Tekin's research has had a significant impact on the field of energy storage, particularly in the development of more efficient and sustainable battery technologies. His work on sodium-ion and lithium-ion batteries has implications for various applications, including portable electronics, Rechargeable Batteries  electric vehicles, and renewable energy storage.

Legacy and Future Contributions

Dr. Tekin is poised to continue making substantial contributions to the field of chemical engineering and energy storage. His future research aims to further enhance the performance and sustainability of battery technologies, contributing to the development of next-generation energy storage systems.