Dr. Kanwal Iqbal – 2D materials – Best Researcher Award

Dr. Kanwal Iqbal - 2D materials - Best Researcher Award

Zhejiang normal university - China 

Author Profile 

SCOPUS 

Early academic pursuits 🎓

Dr. Kanwal Iqbal embarked on her academic journey with a strong foundation in science. she completed her secondary and higher secondary education with excellent grades from the balochistan board. her passion for chemistry led her to pursue a b.sc. in zoology, statistics, and chemistry from the university of balochistan, quetta, where she secured a first division. she continued her studies with an m.sc. in inorganic chemistry from the same university, further refining her expertise in the field. her academic excellence and dedication paved the way for her doctoral studies at lanzhou university, china, where she specialized in inorganic chemistry. she successfully defended her ph.d. in 2018, demonstrating her remarkable research capabilities and deep understanding of chemical sciences.

Professional endeavors 🏛️

Dr. Kanwal Iqbal has built a distinguished career in academia, currently serving as an assistant professor in the department of chemistry at sardar bahadur khan women’s university, quetta, pakistan. her role involves mentoring students, conducting advanced research, and contributing to the development of the department. her academic journey has also taken her to china, where she was affiliated with zhejiang normal university. her extensive experience in teaching and research reflects her commitment to advancing scientific knowledge and inspiring young minds in the field of chemistry.

Contributions and research focus 🔬

Dr. Kanwal Iqbal’s research primarily focuses on inorganic chemistry, with significant contributions to nanotechnology and material science. her work explores the synthesis and 2D materials characterization of advanced materials with potential applications in various industries. her research on nanomedicine and nanotechnology has provided valuable insights into their applications in healthcare and environmental sustainability. she has also contributed to the understanding of new materials with enhanced properties, making her work highly relevant to contemporary scientific advancements. her ability to integrate theoretical knowledge with practical applications has led to groundbreaking findings in her field.

Accolades and recognition 🏅

Dr. Kanwal Iqbal’s exceptional academic and research achievements have earned her numerous accolades. in 2017, she was recognized as an outstanding international student by the chinese government, an honor that reflects her dedication and academic excellence. in 2018, she was awarded the title of excellent graduate, further cementing her reputation as a distinguished 2D materials scholar. she has also published several high-impact research papers, including three as the first author in prestigious sci journals such as the journal of material chemistry a and acs inorganic chemistry, which boast impact factors of 12. her contributions to scientific literature have significantly enhanced the understanding of inorganic chemistry and nanotechnology.

Impact and influence 🌍

Through her research and teaching, dr. kanwal iqbal has had a profound impact on the scientific community and her students. her work in inorganic chemistry and nanotechnology has 2D materials contributed to advancements in material science, with implications for various industrial and medical applications. as a dedicated educator, she has mentored numerous students, guiding them towards successful careers in chemistry. her ability to bridge the gap between theoretical research and practical applications has inspired many young researchers to explore the potential of nanotechnology and advanced materials.

Legacy and future contributions đź”®

Dr. Kanwal Iqbal’s legacy lies in her contributions to inorganic chemistry and her role as an educator and mentor. her research has opened new avenues for the development of advanced materials, and her publications continue to be referenced by scholars worldwide. looking ahead, she aims to further explore the applications of nanotechnology in medicine and environmental science, pushing the boundaries of scientific innovation. her dedication to research and teaching ensures that her impact will be felt for generations to come, inspiring future scientists to make meaningful contributions to the world of chemistry.

Notable Publications 

  • Title: Mesoporous amorphous PdP nanoparticles supported on reduced graphene oxide for voltammetric analysis of trace Hg(II) in environmental water sample
    Authors: L.M. CaiRang, La Mao, Y. Yan, Yajuan, Z. Yang, Zhidong, K. Iqbal, Kanwal, W. Ye, Weichun
    Journal: Microchemical Journal, 2025

  • Title: Advancements in MXene-based frameworks towards photocatalytic hydrogen production, carbon dioxide reduction and pollutant degradation: Current challenges and future prospects
    Authors: Z. Ajmal, Zeeshan, A. Hayat, Asif, A. Qadeer, Abdul, J. Zhou, John, T. Ben, Teng
    Journal: Coordination Chemistry Reviews, 2025

  • Title: A 2D layered fluorescent crystalline porous organic salt
    Authors: D. Sun, Danling, G. Xing, Guolong, J. Lyu, Jie, W. Zhu, Weidong, T. Ben, Teng
    Journal: Journal of Materials Chemistry A, 2024

Assist Prof Dr. Chinmoy das – Energy Materials – Best Researcher Award

Assist Prof Dr. Chinmoy das - Energy Materials - Best Researcher Award

SRM University-AP, Andhra Pradesh - India

Author Profile

SCOPUS

ORCID

Early academic pursuits 🎓

Dr. Chinmoy das began his academic journey with a passion for experimental chemistry, laying a strong foundation during his undergraduate and postgraduate studies. his early interest in sustainable chemistry led him to pursue advanced research focused on eco-friendly materials and energy solutions. this academic groundwork fueled his determination to innovate in areas crucial for addressing climate and environmental challenges.

Professional endeavors 🏛️

throughout his career, dr. das has worked at the intersection of chemistry and environmental sustainability. his professional focus centers on synthesizing functional materials that contribute to sustainable energy solutions. from the conversion of atmospheric co2 into industrial fuels like methanol and ethanol to the creation of clean water from atmospheric moisture, he has consistently pursued impactful solutions. his work with solid-state electrolytes also opens up new possibilities for low-cost, biodegradable lithium and sodium-ion batteries.

Contributions and research focus 🔍

dr. das’s contributions to the field of experimental chemistry are distinguished by his focus on sustainability. he is particularly interested in using green chemistry methods to convert atmospheric co2 into clean fuels, thus offering a promising path toward reducing global carbon emissions. his innovations in harvesting clean Energy Materials water using solar power and creating biodegradable electrolytes for batteries underline his commitment to creating eco-friendly, scalable technologies.

Accolades and recognition 🏅

Dr. Chinmoy das’s pioneering work has garnered recognition from both academic and industrial sectors. his research contributions have led to publications in top-tier journals and invitations to present at international conferences. his ability to bridge fundamental chemistry with practical applications has positioned him as a key Energy Materials figure in sustainable material science and green energy production.

Impact and influence 🌍

The impact of dr. das's research extends beyond the laboratory. his innovative approaches to co2 conversion and water purification have the potential to influence global environmental policy and industrial practices. his work on biodegradable electrolytes offers a promising avenue for reducing the environmental footprint of Energy Materials energy storage technologies. his influence is seen not only in academia but also in industry, where sustainable technologies are urgently needed.

Legacy and future contributions đź”®

dr. Chinmoy das's legacy will be defined by his contributions to developing sustainable, scalable solutions for global environmental challenges. his work in transforming co2 into fuel, purifying water through solar energy, and advancing biodegradable battery technologies will continue to inspire future research. as a visionary experimental chemist, he is poised to lead further innovations in sustainable chemistry, leaving a lasting impact on both scientific and environmental communities.

Notable PublicationsÂ